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Numerical experiments have been performed on normal shock waves with Monte 
Carlo Direct Simulations (MCDS’s) to investigate the validity of continuum theories 
a t  very low Mach numbers. Results from the NavierStokes and the Burnett 
equations are compared to  MCDS’s for both hard-sphere and Maxwell gases. It is 
found that the maximum-slope shock thicknesses are described equally well (within 
the MCDS computational scatter) by either of the continuum formulations for Mach 
numbers smaller than about 1.2. For Mach numbers greater than 1.2, the Burnett 
predictions are more accurate than the NavierStokes results. Temperature-density 
profile separations are best described by the Burnett equations for Mach numbers 
greater than about 1.3. At lower Mach numbers the MCDS scatter is too great to 
differentiate between the two continuum theories. For all Mach numbers above one, 
the shock shapes are more accurately described by the Burnett equations. 

1. Introduction 
The validity of various continuum descriptions of normal shock structure has been 

addressed before in a large number of theoretical and experimental investigations 
(Liepmann, Narasimha & Chahine 1962 ; Elliott 1975 ; Fiszdon, Herczynski & 
Walenta 1974). Two publications (Pham-Van-Diep, Erwin & Muntz 1989 ; Erwin, 
Pham-Vam-Diep & Muntz 1991) by the authors of the present paper have established 
a detailed experimental validation of Bird’s (1976) Monte Carlo Direct Simulation 
(MCDS) computational method. In  these two papers it was shown that if 
appropriately detailed physical inputs are used, MCDS’s can predict with high 
accuracy not only macroscopic property profiles, but also the molecular motion 
throughout the interior of normal shock waves. 

In  this paper, numerical experiments are used to investigate normal shock wave 
behaviour a t  low shock Mach numbers. The experimental study of these shock waves 
is difficult because there are only small changes in the flow properties over 
comparatively large distances. This leads to experimental errors connected with 
instrumentation accuracy as well as upstream and downstream boundary conditions. 
Similar issues confront the MCDS’s ; however, with long runs to accumulate statistics 
and with proper treatment of the boundary conditions (see below) these difficulties 
can, for the most part, be negated. 

I n  order to study low-Mach-number shock waves, MCDS’s have been made for 
several real and fictitious gases. The MCDS’s are treated as if they were experiments 

t To whom correspondence should be addressed. 
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and compared to  shock transition properties obtained from the NavierStokes and 
Burnett equations. Of particular interest here is the limiting behaviour at low shock 
Mach numbers, where definitive experimental studies have not been possible. 

2. Background 
2.1. Shock profile nomenclature 

For the purposes of this paper the shock profile characteristics defined in figure 1 are 
of importance. All are suitable for evaluation from experimental (or computational) 
data. The maximum-slope shock thickness 8, is a traditional measure of the 
characteristic size of the shock transition. A useful single-parameter indicator of 
shock shape is Q (Schmidt 1969). Distances are frequently non-dimensionalized by 
the free-stream mean free path calculated using the Chapman-Enskog first 
approximation to the mean free path for hard-sphere monatomic gases (Chapman & 
Cowling 1952) : 

where a,, T~ and pl ,  respectively, are the sound speed, viscosity and density in the 
upstream flow. The separation between the temperature and density profiles is given 
by A,, at  6 and are defined in 
figure 1 and are convenient for discussing shock structure. 

= 0.5. The non-dimensional quantities 6 and 

2.2. Continuum theories and MCDSs 
It is generally accepted (Liepmann et al. 1962; Fiszdon et al. 1974) that the 
Navier-Stokes equations should describe shock transitions at low Mach numbers. 
However, according to  another viewpoint (Elliott 1975), the Navier-Stokes 
equations are inadequate even a t  extremely low Mach numbers. This work uses the 
shock wave solutions for the Navier-Stokes equations given by Gilbarg & Paolucci 
(1953) and Lumpkin & Chapman (1991) ; those for the Burnett equations are taken 
from Simon & Foch (1977), Talbot & Sherman (1960), and Lumpkin & Chapman 

2.3. Computational considerations 
The work reported here employed a one-dimensional MCDS code originally written 
by Bird (1989) and subsequently modified by the authors (Pham-Van-Diep et al. 
1989; Erwin et al. 1991). The code differed from earlier versions chiefly in the 
calculation of the number of collisions per time step, formerly done with the time 
counter method but now with the ‘no time counter’ method, wherein the number of 
collisions is obtained directly based on the maximum biatomic collision rate in each 
cell. In  this code, the shock develops normal to  the z-axis which is divided into a grid 
of 100 or more cells, each made of 10 sub-cells, corresponding to an interval of a few 
centimeters containing the shock. The ratio of simulated to real atoms is chosen such 
that there are approximately 100 simulated atoms per cell. The grid is non-uniform, 
the cell size decreasing in the downstream direction so that the number of simulated 
particles per cell is almost constant. 

Inputs to the program are the free-stream (x: 6 0) conditions and the shock Mach 
number M. The free-stream conditions are used as the boundary conditions a t  the 
upstream grid edge : entering atoms are sampled from an equilibrium (drifting 
Maxwellian) distribution, while the downstream boundary is a surface of specular 
reflection in motion at the Rankine-Hugoniot velocity. This downstream boundary 

(1991). 
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FIGURE 1. Nomenclature. The flow direction is left to right. The temperature profile and the density 
profile are both normalized to zero upstream and unity downstream of the shock [T = (T- Tl)/ 
(T,-q), ri: = (n-n1)/(n2-n1)] .  (The subscript 1 denotes conditions ahead of the shock (to the left), 
while 2 denotes those downstream of the shock.) The separation between these profiles is the 
temperaturedensity shift A ,  measured a t  72 = 0.5. The dashed line is the line tangent to the density 
profile a t  the maximum slope ; the horizontal distance between its intersections with the lines 
ri: = 0 and 72 = 1 is the maximum-slope shock thickness. The ratio of the shaded areas A, and A, is 
the shape factor Q = A,/A, .  

condition was introduced by Bird (1989). He pointed out that the more usual use of 
an equilibrium downstream boundary, in the same manner as the upstream one, 
produces small disturbances a t  the boundary which are of the same order as the 
shock-related changes for low M ( 5 1.5) and therefore corrupt the solutions. The 
specular-reflection boundary condition removes this problem. 

The computation of low-M shock properties by MCDS requires some care in 
choosing the correct input conditions. The shock waves are very thick in terms of 
upstream mean free paths. Thus, in order to maintain the size of computational 
cells a t  a fraction of a mean free path, significantly more cells are required in the 
computation than at higher M. Moreover, at low M the computations have to proceed 
for a longer-than-normal time to reduce statistical scatter in the results because of 
the small changes in the flow properties across the shock waves. A tabulation of the 
computational parameters for the Mach numbers used in the paper is presented in 
table 1. The table presents for each simulation the Mach number M, the 
temperature-viscosity exponent s (see below), the number of cells N,, the number of 
statistical samples N,, and the size W of the computational domain. 

The MCDS’s were performed using single-precision (32-bit) arithmetic. I n  the 
calculation of temperatures from the molecular motion, there is a truncation error of 
about - 1 to -2 K for temperatures in the 10Ck300 K range. This small error is 
normally of no practical significance, but is noticeable in determining the shift 
between temperature and density profiles in very low-M shock waves. The error 
shifts the temperature profiles slightly downstream relative to their correct positions. 
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FIGURE 2. Density for each cell after 10000 samples. M = 1.35, s = 0.5. 

M 1.2 1.35 1.5 1.59 

1 0.5 1 0.5 1 0.5 1 0.5 

2.13 1.11 2.09 1.79 2.68 4.44 2.19 - 

- 300 300 200 200 100 100 100 

10 10 6 6 4 4 4 - 

1.8 2 2.5 

1 0.5 1 0.5 1 0.5 
100 100 100 100 100 100 

4.37 1.04 2.75 1.24 2.17 2.61 
4 4 4 4 4 4 

t 1 sample = 4 time steps; the time step is variable but x lO-’s. 

TABLE 1. Computational parameters 
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Consequently, a correction was made for this shift in the values of A,, reported here. 
The method for making the correction was verified by comparing its results to the 
outcome of a MCDS using double-precision arithmetic. Both the corrected single- 
precision and the double-precision results are shown later in figure 5. 

There is a variety of contributors to errors in the calculated shock wave results, 
although there are no known systematic sources. In many experiments it is most 
reasonable to infer errors from the results by observing the scatter. In the present 
case, the best estimate of the importance of random errors is also obtained by looking 
at  the scatter of the results. To aid in this we have placed on the presentations of the 
results our estimates of the scatter. No estimates of any systematic error are 
available ; note, however, the comparisons to available experimental data made by 
Erwin et al. (1991). 

Another indication of reliability is provided by the raw data. A shock wave density 
profile is shown in figure 2 by plotting as individual points the data from each 
computational cell. The case shown is after 10000 samples with s = 0.5 (see below) 
and M = 1.35. (This is not one of the conditions reviewed in table 1,  where it is 
indicated that for M = 1.35, 20000 samples were used; the 20000-sample results 
exhibited an appropriately reduced scatter compared to figure 2.) Each sample 
corresponds to four time steps of approximately lo-' s per step. Since data are 
accumulated for each cell after the initial time required for the flows to become 
steady, a larger number of samples represents a larger number of measured molecules 
and thus a lower statistical scatter. 

2.4. Intermolecular potentials 
For the MCDS's presented in this paper, either inverse-power repulsive interatomic 
potentials ranging from hard spheres to Maxwell molecules, or the Maitland-Smith 
(Aziz & Chen 1977; Aziz & Nain 1979) potentials for argon and helium, are used. 
Maitland-Smith potentials have attractive wells and closely mimic actual interatomic 
potentials. Both types of potentials and their relationship to viscosity as well as the 
differential scattering cross-sections derived from the potentials are reviewed in 
detail by Erwin et al. (1991). The inverse-power potentials are identified by the 
corresponding variation of viscosity with temperature, 

where s = 0.5 for hard spheres and 1 for Maxwell molecules. The power law 7 - T* is 
consistent with the inverse-power interparticle potential where w = 2/(s-0.5) : 

U(r )  - r -w.  (3) 

It is shown by Muntz, Pham-Van-Diep & Erwin (1991) that for the case of low- 
Mach-number shock waves, differential scattering from inverse-power intermolecular 
potentials is equivalent to the more usual variable-hard-sphere (VHS) scattering 
scheme introduced by Bird (1981). The majority of the MCDS calculations mentioned 
here were done with the VHS scattering technique, with the understanding that this 
collision scheme yields accurate macroscopic and microscopic properties in normal 
shocks for the Mach-number range investigated (M < 2.5). Some MCDS's using 
differential scattering from Maitland-Smith potentials are also presented and are 
clearly identified. 
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2.19 
273 

2.64 
273 

S 0.5 1 
w co 4 
4 (mm) 1.61 1.25 

TABLE 2. Values of gas characteristics used in computations involving inverse-power potentials 
(tref and drel are for helium) 

2.5. Lengthscales for presentations of results 

In  the original MCDS code, the interaction between atoms is modelled by VHS 
scattering assuming an inverse-power interatomic potential (Bird 1976). By 
matching viscosity data in the temperature range of interest, a VHS reference 
diameter dref can be determined (Bird 1981) : 

(4) 
15[205- 12w(2-w)] (mkT,,,/x)$ [ 16( 101 - 6 ~ )  1 [ r ( 4 - w )  (2 -~}~7, . ,~]4’  dref = 

where Tret, qref, m and k are the reference temperature, reference viscosity, mass of 
the atom and the Boltzmann constant, respectively; w was defined in (3). 

A VHS mean free path was also derived by Bird (1983) : 

where p is the gas density. Note that the VHS mean free path (Bird 1983) differs from 
the Chapman-Enskog mean free path (equation (1) )  by the factor (7 - 2 w )  (5 - 24/24.  
This difference is important when the mean free path is used for normalization 
purposes. The values of dref, reference viscosities and temperatures used for the VHS 
MCDS’s reported here are reproduced in table 2 for reference. Since the MCDS code 
requires absolute inputs, the helium reference values from table 2 were used for all 
of the computations involving inverse-power potentials. The free-stream number 
density was always n, = 2.889 x loz1 m-3 and the free-stream temperature TI = 
160 K. Different Mach numbers were generated by varying the free-stream velocities. 

3. Results and discussion 
MCDS shock thickness (8,) computations are compared in figure 3 to NavierStokes 

(Gilbarg & Paolucci 1953) and Burnett (Talbot & Sherman 1960; Lumpkin & 
Chapman 1991) predictions. The low-Mach-number behaviour of the MCDS results 
was noted by Erwin et al. (1991) and by Bird (1989). Using inverse-power potentials, 
the MCDS’s behave as expected : the shock becomes thicker as s increases, while the 
sensitivity to  s decreases with decreasing Mach number. For reference, MCDS results 
obtained by employing differential scattering and Maitland-Smith intermolecular 
potentials are contrasted to the corresponding MCDS (VHS) results in figure 3. For 
real gases such as argon and helium, as modelled by their Maitland-Smith 
intermolecular potentials, the shock thicknesses are, as expected, bounded by the 
MCDS (VHS) predictions for hard-sphere and Maxwell gases. All predictions appear 
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FIGURE 3. Normalized inverse maximum slope shock thickness vs. Mach number (MCDS vs. various 
theories). -, ----, NavierStokes results (8  = 0.5 and s = 1 respectively) of Gilbarg & Paolucci ; 

, the Burnett result (s = 0.5) of 
Lumpkin & Chapman. The symbols represent the present results: G , MaitlandSmith results for 
wind-tunnel conditions for helium; , MaitlandSmith wind-tunnel results for argon; 0,  s = 0.5; 
0,  s = 1. The MCDS error bars are approximately one symbol height. 

, the Burnett result (s = 1) of Talbot & Sherman; 

to be asymptotic to the NavierStokes and Burnett curves a t  Mach numbers below 
about 1.2. Thus, for real as well as fictitious gases, the low Mach-number asymptotic 
behaviour of the shock thicknesses agrees with that of both the NavierStokes and 
Burnett equations. 

At Mach numbers greater than 1.2, the shock thicknesses for relatively soft real 
intermolecular potentials such as argon’s follow, but are slightly thinner than, the 
Burnett thicknesses for s = 1, a t  least up toM = 2 as demonstrated in figure 3. It may 
also be seen that the MCDS shock thicknesses for a Maxwell gas support the Burnett 
thicknesses for s = 1 and are in noticeable disagreement with the Navier-Stokes 
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FIQURE 4. Shock shape ----, the Navier-Stokes solution for s = 1 ; ----, the Burnett solution 
for s = 1, due to Simon t Foch ; V, the MCDS s = 0.72 solution of Fiscko & Chapman ; 0,  A, 0 ,  
present MCDS results for s = 1, 0.647 and 0.5 respectively ; &, the present result for helium under 
wind-tunnel conditions. 

predictions for the same gas. The comparison between MCDS and Burnett predictions 
is also shown in figure 3 for a hard-sphere gas; note that the MCDS predictions do 
not support the Navier-Stokes results for s = 0.5 but do agree with the Burnett 
results. Thus, the Burnett shock thickness predictions for Mach numbers greater 
than 1.2 are more accurate than the Navier-Stokes predictions for both hard-sphere 
and Maxwell gases. 

Predicted shock shapes are shown in figure 4. I n  this case the form of the potential 
has little effect on the shapes predicted by the MCDS’s. Shock shapes as described by 
the area ratio Q are rather more susceptible to error than the shock thicknesses, 
hence the noticeable scatter in figure 4. The MCDS shapes follow the Burnett 
predictions for s = 1 due to Simon & Foch (1977) very closely and are clearly 
different from the NavierStokes shock shape predictions. I n  the limit of low Mach 
number, the Burnett and Navier-Stokes Q values are qualitatively different, with 
the MCDS’s unequivocally supporting the Burnett values. This conclusion is 
consistent with the results of Fiscko & Chapman (1988) at  higher Mach numbers. 
Their MCDS’s were for Maxwell molecules with VHS scattering. Their lowest-Mach- 
number result agrees very well with the Burnett s = 1 Q values as indicated by the 
Fiscko-Chapman point plotted in figure 4. 

Another quantity that measures shock wave characteristics is the displacement 
between temperature and density profiles ATp.  The predicted values of A,, for 
Maxwell as well as hard-sphere molecules are shown in figure 5 compared to  the 
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FIGURE 5. Temperatureilensity shifts: ----, ----, the s = 1 results of Simon & Foch using the 
Burnett and Navier-Stokes solutions respectively ; -, -- - - , the 9 = 0.5 results of Lumpkin & 
Chapman using Burnett and Navier-Stokes solutions respectively; 0, A, 0,  the present MCDS 
results for s = 1, 0.5 and 0.5 (double-precision) respectively. 

continuum theories for s = 1 and s = 0.5 (Lumpkin & Chapman 1991). At very low 
Mach numbers the scatter of the predictions makes it difficult to assess which theory 
is more accurate ; this precludes drawing any conclusions. However, it  may be noted 
from figure 5 that the MCDS data agree better with the Burnett predictions for Mach 
numbers greater than approximately 1.3. 

Evidence from other phenomena, such as sound propagation, is available (Foch & 
Ford 1970) and leads to the conclusion that the Burnett equations indeed do offer a 
better description than the NavierStokes equations, even for the conditions 
encountered in very low-Mach-number shock waves. Measurements of the molecular 
velocity distribution function in a M = 1.59 shock wave by Muntz & Harnett (1969) 
have been analysed by Holtz, Muntz & Yen (1971). The measurements indicate that 
the Chapman-Enskog first-iterate predictions of the distribution functions fail for 
ratios of the local shear stress to pressure r/p 2 0.05. The maximum value of r / p  in 
a M = 1.3 monatomic shock is approximately 0.05. 

The validity of the Chapman-Enskog procedure has been studied by Elliott 
(1975). It remains theoretically unclear why the second iterate in that procedure 
(Burnett equations) is quantitatively more successful than the first iterate 
(Navier-Stokes equations), although the evidence is now quite strong that this is the 
case. 
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4. Conclusions 
Based on a previous detailed experimental validation of MCDS, numerical 

experiments were performed to  investigate the adequacy of continuum formulations 
for non-equilibrium flows of monatomic gases in very low-Mach-number shock 
waves. It is found that for Mach numbers below about 1.2, shock thicknesses and 
temperaturedensity shifts are described to  within the MCDS computational scatter 
by either the NavierStokes or the Burnett equations; for Mach numbers greater 
than 1.2 the Burnett predictions are more accurate. It was also found that shock 
shapes appear to  be far more accurately described by the Burnett predictions for all 
Mach numbers down to one. 

This work was supported in part by NASA/DOD grant NAGW-1061. Forrest 
Lumpkin and Dean Chapman kindly provided results of their work prior to its 
publication. 
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